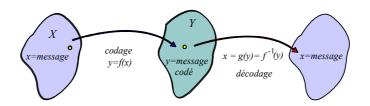
Fonctions réciproques



B. Aoubiza IUT Belfort-Montbéliard Département GTR

6 janvier 2003

Table des matières

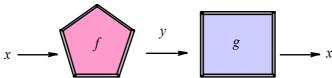
11.1	Fonctions réciproques	3
	11.1.1 Fonction réciproque — Définition	3
	11.1.2 Fonction réciproque — Domaine et domaine image	4
	11.1.3 Fonction réciproque — Détermination de la fonction réciproque	4
	11.1.4 Fonction réciproque — Propriété de continuité	5
	11.1.5 Fonction réciproque — Graphe	5
	11.1.6 Fonction réciproque — Dérivée	6
	11.1.7 Fonction réciproque — un théorème d'existence	7
11.2	Fonctions trigonométriques réciproques	7
	11.2.1 Fonction réciproque de sin – Définition	7
	11.2.2 Fonction réciproque de sin – Propriétés	8
	11.2.3 Fonction réciproque de sin – Graphe	8
	11.2.4 Fonction réciproque de sin – Dérivée	Ĉ
	11.2.5 Fonction réciproque de cos – Définition	G
	11.2.6 Fonction réciproque de cos – Propriétés	
	11.2.7 Fonction réciproque de cos – Graphe	10
	11.2.8 Fonction réciproque de cos – Dérivée	
	11.2.9 Relation fondamentale	11
	$11.2.10 Fonction r\'{e} ciproque de tan - D\'{e} finition \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	11
	11.2.11 Fonction réciproque de tan – Propriétés	11
	$11.2.12 Fonction r\'{e} ciproque de tan - Graphe $	12
	11.2.13 Fonction réciproque de tan – Dérivée	12
	11.2.14 Fonction réciproque de cot – Définition	13
	11.2.15 Fonction réciproque de cot – Propriétés	13
	11.2.16 Fonction réciproque de cot – Graphe	
	11.2.17 Fonction réciproque de cot – Dérivée	
	11.2.18 Fonctions trigonométriques réciproques – Résumé	14
11.3	Fonctions exponentielles de base a	
	11.3.1 Fonctions exponentielles de base a – Propréités	
	11.3.2 Fonctions exponentielles de base a – Graphe	15
11.4	Fonction exponentielle de base e	
	11.4.1 Fonction exponentielle – Définition	
	11.4.2 Fonction exponentielle – Propriétés et limites usuelles	
	11.4.3 Fonction exponentielle – Graphe	
	11.4.4 Fonction exponentielle – Dérivée	
	11.4.5 Fonction exponentielle – Dérivée de la composée	
11.5	Fonctions hyperboliques	
	11.5.1 Fonctions hyperboliques – Définitions	19
	11.5.2 Fonctions hyperboliques – Fonction cosh	19
	11.5.3 Fonctions hyperboliques – Fonction sinh	20
	11.5.4 Fonctions hyperboliques – Relation fondamentale	20
11.6	Fonctions hyperboliques réciproques	20
	11.6.1 Fonction réciproque de cosh – Définition	20
	11.6.2 Fonction réciproque de cosh – Propriétés	21
	11.6.2 Tomeston reciproque de costa l'imprices	01

	11.6.4	Fonction réciproque de cosh – Dérivée	21
	11.6.5	Fonction réciproque de sinh – Définition	21
	11.6.6	Fonction réciproque de sinh – Propriétés	22
	11.6.7	Fonction réciproque de sinh – Graphe	22
	11.6.8	Fonction réciproque de sinh – Dérivée	22
11.7	Fonction	on logarithme	23
	11.7.1	Fonction logarithme – Définition	23
	11.7.2	Fonction logarithme – Graphe	23
	11.7.3	Fonction logarithme – Propriétés	23
	11.7.4	Fonction logarithme – Dérivée	25
	11.7.5	Fonction logarithme – Dérivée $\ln(v(x))$	25
11.8	Fonction	ons logarithme de base $a\ (a>0)$	27
	11.8.1	Fonctions logarithme de base a – Définition	27
	11.8.2	Fonctions logarithme de base a – Propriétés	27
	11.8.3	Fonctions logarithme de base a – Changement de base	27
	11.8.4	Fonctions logarithme de base a – Dérivation	28
11.9	Fonction	ons exponentielles de base a	28
		Fonctions exponentielles de base a – Nouvelle formulation	
	11.9.2	Fonctions exponentielles de base a – Dérivation	28
11.10)Fonction	ons puissances	28
	11.10.1	Fonctions puissances – Définition	28
	11.10.2	Pronctions puissances – Dérivée	29
	11.10.3	Fonctions puissances – Graphes	29
11.11	Compa	raison des croissances	29

11.1 Fonctions réciproques

11.1.1 Fonction réciproque — Définition

Il arrive souvent que, pour une fonction donnée f, on a besoin (si c'est possible) d'une autre fonction g telle que :

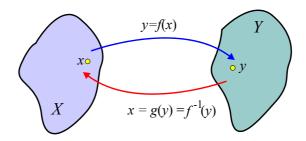


Dèfinition 1 (Fonctions réciproque) Si f est une application de X dans Y et g est une application de Y dans X telles que

- $-f(g(y)) = y \text{ pour tout } y \in Y$
- $-g(f(x)) = x \text{ pour tout } x \in X$

on dit que f est la fonction réciproque de g, et que g est la fonction réciproque de f.

Notation 1 La fonction réciproque de f se note f^{-1} .



Exemple 1 Soient f et g les deux fonctions définies par

Ces deux fonctions vérifient les relations suivantes :

- $-f(g(y)) = f(\sqrt{y}) = (\sqrt{y})^2 = y \quad pour \ tout \ y \in [0, +\infty[$
- $-g(f(x)) = g(x^2) = \sqrt{x^2} = x \quad pour \ tout \ x \in [0, +\infty[$

Donc f est la fonction réciproque de g, et g est la fonction réciproque de f.

Définition 2 (Fonction Bijective) une fonction f est bijective sur un domaine (intervalle) si chaque fois que $f(x_1) = f(x_2)$, alors $x_1 = x_2$.

Remarque 1 Rappelons que toute fonction bijective admet une fonction réciproque.

Exemple 2 Montrer que la fonction $f(x) = x^3$ est bijective.

Solution: Montrons que si $f(x_1) = f(x_2)$ alors $x_1 = x_2$.

Soient x_1 et x_2 deux réels quelconques tels que $f(x_1) = f(x_2)$. On a

$$x_1^3 = x_2^3$$
 et donc $x_1^3 - x_2^3 = 0$

or

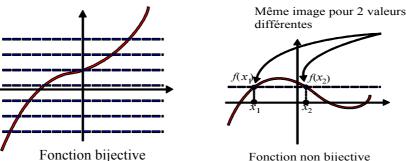
$$x_1^3 - x_2^3 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0$$

Le produit est nul si l'un des facteurs est nul. On déduit donc que $x_1 = x_2$ car $x_1^2 + x_1x_2 + x_2^2$ ne peut pas être nul dans \mathbb{R} . (dire pourquoi?)

Exemple 3 La fonction $f(x) = x^2$ définie pour tout réel x, n'est pas bijective car f(1) = f(-1) mais $1 \neq -1$.

Test de la droite horizontale

Une fonction f est bijective si et seulement si toute droite horizontale ne peut rencontrer C_f qu'au plus en un point.



Fonction non bijective

11.1.2 Fonction réciproque — Domaine et domaine image

On déduit facilement les relations suivantes entre le domaine image et le domaine de définition :

domaine de
$$f^{-1}$$
 = domaine image de f domaine image de f^{-1} = domaine de f

Fonction réciproque — Détermination de la fonction réciproque

Pour déterminer la fonction réciproque de y = f(x):

- 1. Résoudre l'équation y = f(x) où l'inconnue est x, on obtient alors x = g(y).
- 2. Remplacer y par x et x par y dans l'expression x = g(y) pour obtenir

$$y = g(x) = f^{-1}(x)$$

Exemple 4 Soit $f(x) = x^2$ pour x > 0. Déterminer sa fonction réciproque.

Solution : On résout l'équation

$$y = x^2, \qquad x > 0$$

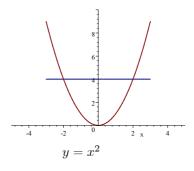
où l'inconnue est x, on obtient

$$x = \sqrt{y}, \qquad y > 0$$

Maintenant on remplace y par x et x par y on obtient

$$y = \sqrt{x}, \qquad x > 0$$

Ainsi, la fonction réciproque $f^{-1}(x)$ de $f(x) = x^2$, pour x > 0, est la fonction racine carrée : $f^{-1}(x) = \sqrt{x}$. Point de vue graphique. Si on regarde le graphe de $y = x^2$, pour tout x, on voit que cette fonction ne peut pas avoir de réciproque pour tout x.



Noter que la droite horizontale y=4 coupe la courbe de $y=x^2$ en deux points. Ce qui signifie que la fonction n'est pas bijective et donc elle n'admet pas de fonction réciproque.

11.1.4 Fonction réciproque — Propriété de continuité

Théorème 1 Si f est une fonction bijective continue sur un intervalle, alors sa fonction réciproque f^{-1} est aussi continue.

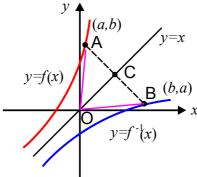
11.1.5 Fonction réciproque — Graphe

Théorème 2 Les courbes des fonctions f et de sa réciproque f^{-1} sont symétriques par rapport à la droite y = x.

Preuve. La pente de droite passant par les pointes (a, b) et (b, a) est donnée par

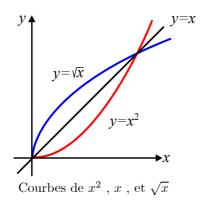
$$\frac{a-b}{b-a} = -1$$

Ce qui signifie que cette droite est orthogonale à la droite y=x de pente 1. En utilisant des arguments géométriques : $\widehat{(OA,Oy)} = \widehat{(OB,Ox)}$ est donc les triangles OAC et OBC sont "semblables", on déduit que AC = BC.



Ce qui signifie que B est le symétrique de A par rapport à la première bissectrice y=x.

Exemple 5 Les graphes des fonctions x^2 , \sqrt{x} , et x.



Exemple 6 Déterminer la fonction réciproque de y = 4x + 1 et tracer son graphe. **Solution :** Résolvons l'équation y = 4x + 1 où l'inconnue est x :

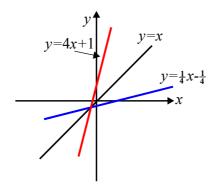
$$y = 4x + 1$$
$$x = (y - 1)/4 = \frac{1}{4}y - \frac{1}{4}$$

Maintenant on remplace y par x et x par y on obtient

$$y = \frac{1}{4}x - \frac{1}{4}$$

5

Ainsi, $f^{-1}(x) = \frac{1}{4}x - \frac{1}{4}$. Les courbes de f et de f^{-1} sont symétriques par rapport à y = x.



Exemple 7 Déterminer la fonction réciproque de $f(x) = x^2$ pour x < 0 et tracer sa courbe.

 ${m Solution}$: Résolvons l'équation où l'inconnue est x

$$y = x^2, \qquad x < 0$$

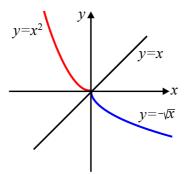
on obtient

$$x = -\sqrt{y}$$
 $y > 0$

Maintenant on $remplace\ y\ par\ x\ et\ x\ par\ y$ on obtient

$$y = -\sqrt{x}, \qquad x > 0$$

Ainsi, $f^{-1}(x) == -\sqrt{x}$ pour x > 0. Les courbes de f et de f^{-1} sont symétriques par rapport à y = x.



Courbes de x^2 , x et $-\sqrt{x}$

11.1.6 Fonction réciproque — Dérivée

Notons que si f est bijective, alors elle admet une fonction réciproque f^{-1} . Ces deux fonctions vérifient la relation suivante :

$$f(f^{-1}(x)) = x$$
 et $f^{-1}(f(x)) = x$

Ainsi, en dérivant des deux côtés, on obtient

$$\left(f(f^{-1}(x))\right)'=1$$

et en utilisant la relation de la dérivation des fonctions composées :

$$u(v(x))' = u'(v(x)).v'(x)$$

on déduit que

$$(f(f^{-1}(x)))' = f'(f^{-1}(x)).(f^{-1})'(x) = 1$$

d'où

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Exemple 8 Déterminer la dérivée de la fonction réciproque de $f(x) = x^3$.

Solution : La fonction réciproque est donnée par $f^{-1}(x) = x^{1/3}$.

Sachant que $f'(x) = 3x^2$ et que $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$, on déduit que

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{3(f^{-1}(x))^2} = \frac{1}{3(x^{1/3})^2} = \frac{1}{3x^{2/3}}$$

11.1.7 Fonction réciproque — un théorème d'existence

Rappelons le théorème suivant qui est très utile pour établir l'existence de la réciproque de certaines fonctions.

Théorème 3 Si f est une fonction

- continue sur un intervalle I;
- strictement monotone sur un intervalle I.

Alors f admet une fonction réciproque f^{-1} continue.

Remarque 2 D'après le théorème ci-dessus,

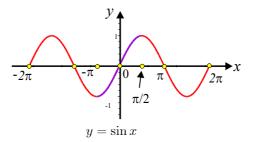
- 1. si une fonction f est continue et strictement croissante sur I, alors elle admet une fonction réciproque f^{-1} :
- 2. si une fonction f est continue et strictement décroissante sur I, alors elle admet une fonction réciproque f^{-1} ;

11.2 Fonctions trigonométriques réciproques

Notons tout de suite que les fonctions trigonométriques ne sont pas injectives sur \mathbb{R} . Afin de déterminer leurs fonctions réciproques, on part d'intervalles, les plus grands possibles, sur les quels elles sont strictement monotones.

11.2.1 Fonction réciproque de sin – Définition

Un examen rapide du graphe de $\sin x$ montre que le plus grand intervalle sur lequel la fonction est bijective est de longueur π , et l'un de ces intervalle est $[-\frac{\pi}{2}, \frac{\pi}{2}]$.



En effet, $\sin x$ est bijective sur un nombre infini de tels intervalles : $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right] \cdots$.

Pourquoi sin est bijective sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?

La restriction de la fonction sin à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est **continue** et **strictement croissante**, donc elle est bijective. Par conséquent elle admet une fonction réciproque qu'on appelle **arcsinus** et qu'on note arcsin, ainsi :

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \qquad \xrightarrow{\text{sin} \atop \text{arcsin}} \qquad \left[-1, 1\right]$$

Ce qui peut se traduire de la manière suivante

$$\left\{ \begin{array}{ll} y = \arcsin x \\ x \in [-1,1] \end{array} \right. \iff \left\{ \begin{array}{ll} x = \sin y \\ y \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \end{array} \right.$$

11.2.2 Fonction réciproque de sin - Propriétés

On a donc les propriétés fondamentale de cette nouvelle fonction :

- 1. Le domaine de définition de arcsin est [-1, 1];
- 2. Le domaine image de arcsin est $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$;
- 3. $\sin(\arcsin x) = x$ pour tout $x \in [-1, 1]$;
- 4. $\arcsin(\sin x) = x$ pour tout $x \in \mathbb{R}$ (pourquoi?).

Remarque 3 Cette nouvelle fonction est une fonction comme d'autre. Rappelez-vous la fonction racine carrée \sqrt{x} son domaine est $[0, +\infty[$ son domaine image est $[0, +\infty[$.

Exemple 9 Calculer $\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right)$.

Solution : On est tenté de dire que la réponse est $\frac{3\pi}{4}$ ce qui est faut car $\frac{3\pi}{4} \notin [-\pi/2, \pi/2]$. Ainsi, on a besoin de trouver un nombre x dans $[-\pi/2, \pi/2]$ tel que $\sin x = \sin(3\pi/4)$.

Comment trouver x? (Méthode 1) On note que $\sin x$ vérifie la relation de symétrie graphique

$$\sin\left(\frac{\pi}{2} + \theta\right) = \sin\left(\frac{\pi}{2} - \theta\right)$$

par suite on $a \sin(3\pi/4) = \sin\left(\frac{\pi}{2} + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right)$ et $\pi/4$ est dans l'intervalle $[-\pi/2, \pi/2]$. D'où,

$$\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right) = \arcsin\left(\sin\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4}$$

Comment trouver x? (**Méthode 2**) Cette méthode est similaire à la précédente, mais elle ne fait pas appelle à la symétrie géométrique. Plutôt, on utilise la formule (elle est facile à montrer)

$$\sin(\pi - x) = \sin x$$

 $et \ don \ si \ on \ prend \ x = \frac{\pi}{4} \ on \ obtient \ \sin(\pi - \frac{\pi}{4}) = \sin(\frac{3\pi}{4}) = \sin\frac{\pi}{4}. \ \ Et \ donc \ x = \frac{\pi}{4} \ est \ la \ solution \ du \ problème.$

Exemple 10 Soit $f(x) = \arcsin(x^2 - 1)$. Déterminer le domaine de définition et le domaine image de f. Solution :

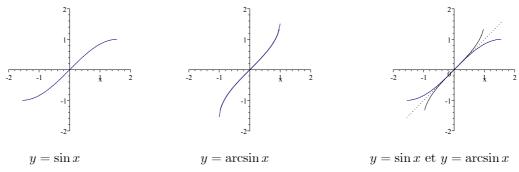
- **Domaine** :La fonction f est définie pour les réels x vérifiant $-1 \le x^2 - 1 \le 1$ soit $0 \le x^2 \le 2$ d'où

$$D = \left\{ x : -\sqrt{2} \le x \le \sqrt{2} \right\} = \left[-\sqrt{2}, \sqrt{2} \right]$$

-Domaine image: il est facile de vérifier que quand x varie dans $\left[-\sqrt{2},\sqrt{2}\right]$, x^2-1 prend toutes les valeurs entre -1 et 1, c'est-à-dire le domaine de arcsin. Ainsi, le domaine image de arcsin $\left(x^2-1\right)$ est le même que celui de arcsin x, qui est $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

11.2.3 Fonction réciproque de sin – Graphe

La courbe de arcsin s'obtient par symétrie par rapport à la première bissectrice de la courbe de sin .



Remarque 4 La fonction $\arcsin(x)$ admet des tangentes verticales en $x = \pm 1$. Pourquoi ?

11.2.4 Fonction réciproque de sin – Dérivée

La dérivée de la fonction $\arcsin x$ s'obtient par application de la formule de la dérivée de la fonction réciproque :

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}$$

or $\cos^2(x) + \sin^2(x) = 1$ et donc $\cos(\arcsin(x)) = \sqrt{1 - \sin^2(\arcsin x)}$ comme

$$\sin^2(\arcsin x) = (\sin(\arcsin x))^2 = x^2$$

On déduit que

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

Exemple 11 Calculer la dérivée de la fonction : $f(x) = \arcsin(1 - x^2)$

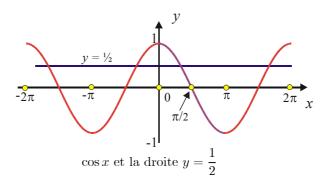
Solution: La fonction f est la composée des fonctions $\arcsin()$ et de $1-x^2$. Par application de la dérivée de la fonction composée $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ $(f(x) = \arcsin(x))$ et $g(x) = 1-x^2$ on a

$$\frac{d}{dx}\left(\sin^{-1}\left(1-x^2\right)\right) = \frac{1}{\sqrt{1-\left(1-x^2\right)^2}}\left(-2x\right) = \frac{-2x}{\sqrt{2x^2-x^4}}$$

Rappel, il n'y a rien de nouveau, on ne fait qu'appliquer la règle de dérivation de la composée.

11.2.5 Fonction réciproque de cos – Définition

La courbe de $\cos x$ ci-dessous montre qu'il y a de nombreuse possibilité de domaine de restriction où la fonction cos est bijective.



On choisit la restriction au domaine $[0, \pi]$. Bien sûr il y a une infinité d'autres choix.

Pourquoi cos est bijective sur $[0, \pi]$?

La restriction de la fonction cos à $[0,\pi]$ est continue et croissante donc elle est bijective et par conséquent ell admet une fonction réciproque qu'on appelle **arccosinus** et qu'on note arccos, ainsi :

$$[0,\pi] \xrightarrow{\underset{\text{arccos}}{\text{cos}}} [-1,1]$$

Ce qui peut se traduire par

$$\left\{ \begin{array}{ll} y = \arccos x \\ x \in [-1,1] \end{array} \right. \iff \left\{ \begin{array}{ll} x = \cos y \\ y \in [0,\pi] \end{array} \right.$$

11.2.6 Fonction réciproque de cos – Propriétés

- 1. Le domaine de définition de arccos est [-1,1];
- 2. Le domaine image de arccos est $[0, \pi]$;
- 3. $\cos(\arccos x) = x$ pour tout $x \in [-1, 1]$;

4. $\arccos(\cos x) = x$ pour tout $x \in \mathbb{R}$ (pourquoi?).

Exemple 12 Déterminer le domaine de définition et le domaine image de la fonction $f(x) = \arccos(1-2x)$. **Solution**: Notons que la fonction f est définie pour tout x tel que $-1 \le 1 - 2x \le 1$, c'est-à-dire, quand 1-2x est dans le domaine de arccos. En résolvant cette inéquation on déduit que $0 \le x \le 1$. D'où

$$D_f = [0, 1]$$

Par ailleurs, quand x varie dans l'intervalle [0,1], 1-2x prend toute les valeurs de [-1,1]. Ainsi,

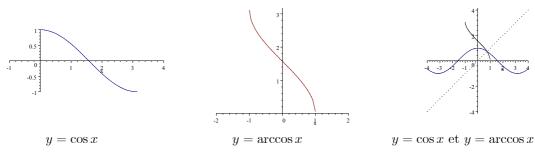
$$\operatorname{Im} f = [0, \pi$$

Exemple 13 Calculer $\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right)$. On est tenté de dire que la réponse est $-\frac{\pi}{4}$ ce qui est faut $\operatorname{car} -\frac{\pi}{4}$ $\notin [0,\pi]$. Ainsi, on a besoin de trouver un nombre x dans $[0,\pi]$ tel que $\cos x = \sin\left(-\pi/4\right)$. Comme $\cos x$ est une fonction paire on $a\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)$. Ainsi,

$$\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) = \arccos\left(\cos\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4}$$

11.2.7 Fonction réciproque de cos – Graphe

La courbe de arccos s'obtient par symétrie par rapport à la première bissectrice de la courbe de cos:



Remarque 5 La fonction arccos(x) admet des tangentes verticales en $x = \pm 1$. Pourquoi?

Fonction réciproque de cos – Dérivée 11.2.8

La dérivée de la fonction arccos x s'obtient par application de la formule de la dérivée de la fonction réciproque:

$$\arccos'(x) = \frac{1}{\cos'(\arccos x)} = -\frac{1}{\sin(\arccos x)}$$

or $\cos^2(x) + \sin^2(x) = 1$ et donc $\sin(\arccos(x)) = \sqrt{1 - \cos^2(\arccos x)} = \sqrt{1 - x^2}$. D'où

$$\arccos' x = \frac{-1}{\sqrt{1-x^2}}$$

Remarque 6 Noter qu'on a la relation suivante :

$$\arcsin' x + \arccos' x = \frac{1}{\sqrt{1 - x^2}} + \frac{-1}{\sqrt{1 - x^2}} = 0$$

autrement

$$\arcsin' x = -\arccos' x$$

Exemple 14 On considère la fonction $f(x) = \arccos(e^x)$. Calculer $\frac{df}{dx}$. Solution: La fonction f est la composée des fonctions $\arccos()$ et de e^x . Par application de la dérivée de la fonction composée $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ $(f(x) = \arccos(x) \ et \ g(x) = e^x)$ on a

$$\frac{d}{dx}(\arccos(e^x)) = \frac{1}{\sqrt{1 - (e^x)^2}}(e^x) = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

Rappel: il n'y a rien de nouveau, on ne fait qu'appliquer la règle de dérivation de la composée.

11.2.9 Relation fondamentale

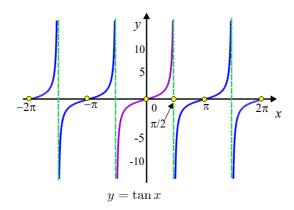
Exercice 1 Etablir la relation fondamentale suivante

$$\arcsin x + \arccos x = \frac{\pi}{2} \quad \forall x \in [-1, 1]$$

Démonstration en TD (indication : si la dérivée est nulle sur un intervalle, alors la fonction est une constante).

11.2.10 Fonction réciproque de tan – Définition

Rappelons le graphe de $\tan x$.



Comme vous pouvez le constater, l'ensemble image de tan est $\mathbb R$ et cette fonction tan x est bijective sur l'intervalle $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ (car continue et croissante). La restriction de la fonction tan à $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ admet une fonction réciproque qu'on appelle **arctangente** et qu'on note arctan, ainsi :

$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\quad \xrightarrow{\text{tan} \atop \text{arctan}} \quad \mathbb{R}$$

Ce qu'on peut traduire par

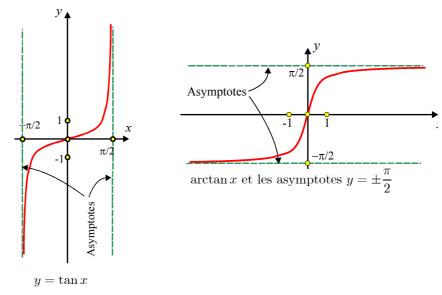
$$\left\{ \begin{array}{c} y = \arctan x \\ x \in \mathbb{R} \end{array} \right. \iff \left\{ \begin{array}{c} x = \tan y \\ y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\end{array} \right.$$

11.2.11 Fonction réciproque de tan – Propriétés

- 1. Le domaine de définition de arctan est \mathbb{R} ;
- 2. Le domaine image de arctan est $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$;
- 3. $tan(\arctan x) = x \text{ pour tout } x \in \mathbb{R};$
- 4. $\arctan(\tan x) = x$ pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

11.2.12 Fonction réciproque de tan - Graphe

La courbe de arctan s'obtient par symétrie par rapport à la première bissectrice de la courbe de tan.



Exemple 15 Calculer $\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right)$.

Solution: $\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right)$ n'est pas égale à $\frac{5\pi}{4}$ car $\frac{5\pi}{4} \notin \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. Sachant que $\tan x$ est périodique de période π , on a, $\tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right)$, et donc

$$\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right) = \arctan\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4}$$

11.2.13 Fonction réciproque de tan – Dérivée

La dérivée de la fonction $\operatorname{arctan} x$ s'obtient par application de la formule de la dérivée de la fonction réciproque :

$$\arctan'(x) = \frac{1}{\tan'(\arctan x)} = \frac{1}{1 + \tan^2(\arctan x)}$$

d'où

$$\arctan' x = \frac{1}{1 + x^2}$$

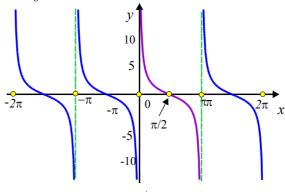
Exemple 16 Calculer la dérivée de $f(x) = \arctan(\sin x)$.

Solution: La fonction f est la composée de \arctan () et $\sin x$, par application de la dérivation de la composée on a

$$\frac{d}{dx}\left(\arctan\left(\sin x\right)\right) = \frac{1}{1+\sin^2 x}\frac{d}{dx}\sin x = \frac{\cos x}{1+\sin^2 x}$$

Fonction réciproque de cot – Définition 11.2.14

Rappelons ci-dessous le graphe de $y = \cot x$.



 $y = \cot x$

Noter que la fonction $\cot x$ n'est pa bijective sur son domaine de définition, mais que sa restriction à l'intervalle $]0,\pi[$ l'est (continue et strictement croissante).

Ainsi, la restriction de la fonction cot à $]0,\pi[$ admet une fonction réciproque qu'on appelle arccotangente et qu'on note arccot. On a donc :

$$]0,\pi[$$
 $\xrightarrow{\cot}$ \mathbb{F}

Ce qui est équivalent à

$$\left\{ \begin{array}{ll} y = \operatorname{arccot} x \\ x \in \mathbb{R} \end{array} \right. \iff \left\{ \begin{array}{ll} x = \cot y \\ y \in \left] 0, \pi \right[\end{array} \right.$$

Fonction réciproque de cot - Propriétés 11.2.15

- 1. Le domaine de définition de arccot est \mathbb{R} ;
- 2. Le domaine image de arccot est $]0,\pi[$;
- 3. $\cot(\operatorname{arccot} x) = x \text{ pour tout } x \in \mathbb{R};$
- 4. $\operatorname{arccot}(\cot x) = x \text{ pour tout } x \in]0, \pi[.$

Exemple 17 Calculer $\operatorname{arccot}\left(\cot\left(\frac{-\pi}{4}\right)\right)$.

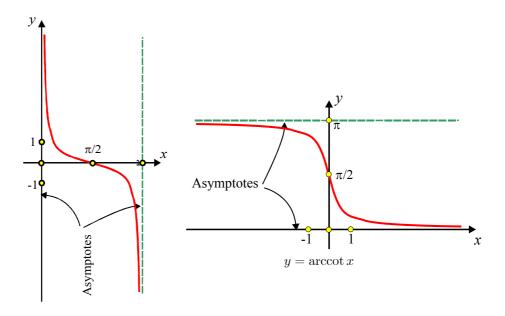
Solution: Comme précédemment, on doit trouver un angle θ dans l'ensemble image de arccot tel que $\cot\theta=0$ $\cot(\frac{-\pi}{4})$. Comme $\cot x$ est périodique de période π , on a $\cot(\frac{3\pi}{4})$ = $\cot(\frac{-\pi}{4})$. Par conséquent,

$$\operatorname{arccot}\left(\cot\frac{-\pi}{4}\right) = \operatorname{arccot}\left(\cot\frac{3\pi}{4}\right) = \frac{3\pi}{4}$$

13

11.2.16 Fonction réciproque de cot – Graphe

La courbe de arccot s'obtient par symétrie par rapport à la première bissectrice de la courbe de cot tan .



11.2.17 Fonction réciproque de cot – Dérivée

La dérivée de la fonction $\operatorname{arccot} x$ s'obtient par application de la formule de la dérivée de la fonction réciproque :

$$\arctan'(x) = \frac{1}{\cot'(\operatorname{arccot} x)} = \frac{1}{-1 - \cot^2(\operatorname{arccot} x)} = \frac{-1}{1 + \cot^2(\operatorname{arccot} x)}$$

d'où

$$\arctan' x = \frac{-1}{1+x^2}$$

Exemple 18 Déterminer la dérivée de $f(x) = \operatorname{arccot}(2x+1)$.

Solution: Par application de la formule de dérivation de la composée, on a

$$\frac{d}{dx}\left(\operatorname{arccot}(2x+1)\right) = \frac{-1}{1+(2x+1)^2}\frac{d}{dx}\left(2x+1\right) = \frac{-2}{1+(2x+1)^2} = \frac{-2}{4x^2+4x+2}$$
$$= \frac{-1}{2x^2+2x+1}$$

11.2.18 Fonctions trigonométriques réciproques – Résumé

Fonction	Domaine	Image	Dérivée
arcsin	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$\frac{1}{\sqrt{1-x^2}} \text{ pour } x < 1$
arccos	[-1, 1]	$[0,\pi]$	$\frac{-1}{\sqrt{1-x^2}} \text{ pour } x < 1$
arctan	$]-\infty,\infty[$	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	$\frac{1}{1+x^2}$ pour tout x
arccot	$]-\infty,\infty[$	$]0,\pi[$	$\frac{-1}{1+x^2}$ pour tout x

_	Formule de la dérivée de la composée
Fonction	
$\frac{d}{dx}\left[\arcsin(g\left(x\right))\right] =$	$\frac{g'(x)}{\sqrt{1-g^2(x)}} \text{pour } g(x) < 1$
$\frac{d}{dx}\left[\arccos(g(x))\right] =$	$\frac{-g'(x)}{\sqrt{1-g^2(x)}} \text{pour } g(x) < 1$
$\frac{d}{dx}\left[\arctan(g\left(x\right))\right] =$	$\frac{g'(x)}{1+g^2(x)} \text{pour tout } x$
$\frac{d}{dx}\left[\operatorname{arccot}(g\left(x\right))\right] =$	$\frac{-g'(x)}{1+g^2(x)} \text{pour tout } x$

11.3 Fonctions exponentielles de base a

11.3.1 Fonctions exponentielles de base a – Propréités

La fonction exponentielle de base a, réel positif (a > 0), a les propriétés algébriques suivantes :

$$-a^{0} = 1,$$

$$-a^{x+z} = a^{x}a^{z},$$

$$-a^{x-z} = \frac{a^{x}}{a^{z}},$$

$$-(a^{x})^{z} = a^{xz},$$

$$-a^{x}b^{x} = (ab)^{x}, \qquad b > 0$$

$$-\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}, \qquad b > 0$$

Exemples

$$-2^{4}2^{6} = 2^{4+6} = 2^{10} = 1024$$

$$-3^{8}/3^{6} = 3^{8-6} = 3^{2} = 9$$

$$-(2^{2})^{3} = 2^{6} = 64$$

$$-(4^{2})^{-2} = 4^{-4} = 1/256$$

$$-2^{-4}2^{8} = 2^{-4+8} = 2^{4} = 16$$

$$-3^{-2}4^{-2} = 12^{-2} = 1/12^{2} = 1/144$$

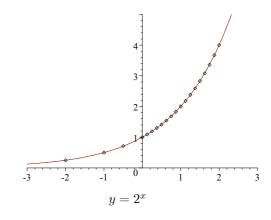
Exercice 2 Simplifier (a) 2^32^6 , (b) $(4^5)^6$, (c) $3^34^23^4$.

11.3.2 Fonctions exponentielles de base a – Graphe

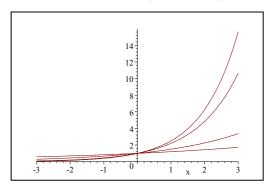
On détermine l'image d'un certain nombre de réels puis on les joint (Ce n'est pas une méthode conseillée).

Exemple 19 Graphe de $y = 2^x$

x	2^x	x	2^x	x	2^x
0 1	1.00 1.09 1.19 1.30 1.41	$\frac{91 \times 10}{91 \times 11} \times 11 \times 11 \times 11 \times 11 \times 11 \times 11 \times$	2.18 2.38 2.59 2.83 3.08	$ \begin{array}{r} -2 \\ -1 \\ -\frac{1}{2} \end{array} $	0.25 0.50 0.71
5 86 87 8 1	1.54 1.68 1.83 2.00	$\begin{array}{r} \frac{14}{8} \\ \frac{15}{8} \\ 2 \end{array}$	3.36 3.67 4.00		



Pour tout a > 1, les graphes de $y = a^x$ ont le même comportement que celui de $y = 2^x$.

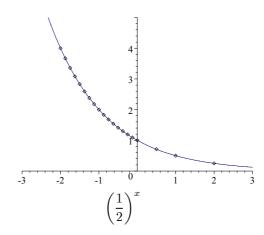


Exemple 20 Graphe de $y = \left(\frac{1}{2}\right)^x$. Noter que

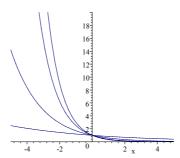
$$\left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x}$$

Ainsi le graphe de $y=\left(\frac{1}{2}\right)^x$ est la symétrie par rapport à Oy du graphe de $y=2^x$.

X	$\left(\frac{1}{2}\right)^x$	x	$\left(\frac{1}{2}\right)^x$
0	1.00	$-\frac{10}{8}$	2.38
$-\frac{1}{8}$	1.09	$-\frac{11}{8}$	2.59
$-\frac{2}{8}$	1.19	$-\frac{12}{8}$	2.83
$-\frac{3}{8}$	1.30	$-\frac{13}{8}$	3.08
$-\frac{4}{8}$	1.41	$-\frac{14}{8}$	3.36
$-\frac{5}{8}$	1.54	$-\frac{15}{8} \\ -2$	3.67
$-\frac{6}{8}$	1.68	$-\overset{\circ}{2}$	4.00
	1.83	$\frac{1}{2}$	0.71
-1	2.00	$\tilde{1}$	0.50
$-\frac{9}{8}$	2.18	2	0.25



Pour tout 0 < a < 1, les graphes de $y = a^x$ ont le même comportement que celui de $y = \left(\frac{1}{2}\right)^x$.



11.4 Fonction exponentielle de base e

11.4.1 Fonction exponentielle – Définition

Rappelons qu'après 0 et 1, le nombre le plus important en calcul différentiel et e. En effet e est plus important que π . Voici le nombre e avec dix chiffres après la virgule : 2.718281828. Et Voici e avec 50 chiffres après la

16

Ce nombre e est utilisé pour définir la fonction exponentielle.

Définition 3 La fonction exponentielle est définie par :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto e^{x}$$

Son domaine est \mathbb{R} et son domaine image est $[0, +\infty[$. On la note aussi $\exp(x)$.

Remarque 7 Noter que quand on dit fonction exponentielle cela veut dire Fonctions exponentielles de base e.

11.4.2 Fonction exponentielle – Propriétés et limites usuelles

La fonction exponentielle a les propriétés suivantes :

$$-e^{0} = 1$$

$$-e^{x+z} = e^{x}e^{z}$$

$$-e^{x-z} = e^{x}/e^{z}$$

$$-(e^{x})^{z} = e^{xz}$$

$$-\lim_{x \to -\infty} e^{x} = 0$$

$$-\lim_{x \to +\infty} e^{x} = +\infty$$

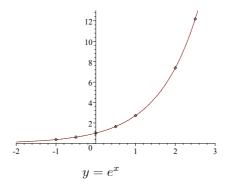
$$-\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty$$

Il est très important de retenir ces propriétés.

11.4.3 Fonction exponentielle – Graphe

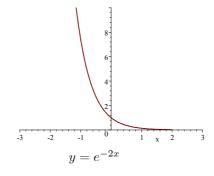
Il est important de connaître l'allure de la courbe de cette fonction. On détermine l'image d'un certain nombre de réels puis on les joint.

$$\begin{array}{c|c} x & e^x \\ -1 & .36788 \\ -0.5 & .60653 \\ 0 & 1.0 \\ 0.5 & 1.6487 \\ 1 & 2.7183 \\ 2 & 7.3891 \\ 2.5 & 12.182 \end{array}$$



Exemple 21 Tracer le graphe de $y = e^{-2x}$.

Solution: En utilisant les propriétés de l'exponentiel on $a: e^{-2x} = (e^{-2})^x = (1/e^2)^x$. Ainsi, on peut tracer le graphe de cette fonction en calculant d'abord $1/e^2$ puis on évalue $(1/e^2)^x$ pour chaque x.



11.4.4 Fonction exponentielle – Dérivée

Par définition, la dérivée d'une fonction f est donnée par :

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Ainsi, pour $f(x) = e^x$ sa dérivée est donnée par :

$$\frac{d}{dx}(e^x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} e^x \left(\frac{e^h - 1}{h}\right)$$

$$= e^x \lim_{h \to 0} \frac{e^{h-1}}{h}$$

$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$

La détermination de cette dérivée nécessite le calcul de la limite de $(e^h - 1)/h$ quand h tend 0. En utilisant la calculette, il est facile d'obtenir les résultats suivants :

h	$\frac{e^h-1}{h}$
.1	1.105170918
.05	1.051271096
.01	1.010050167
.001	1.001000500
.0001	1.000100005
.00001	1.000010000

Il apparaît que :

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Ce qui est vraie! d'où

$$\frac{d}{dx}(e^x) = e^x$$

C'est une propriété remarquable de la fonction $y = e^x$. La dérivée de la fonction est la fonction elle même!

11.4.5 Fonction exponentielle – Dérivée de la composée

La fonction

$$f(x) = e^{v(x)} = u(v(x))$$

est la composée de la fonction exponentielle $u(x) = e^x$ et de la fonction v. En appliquant la règle de dérivation de la fonction composée

$$[u(v(x))]' = u'(v(x)).v'(x)$$

et en tenant compte du fait que

$$u'(x) = (e^x)' = e^x$$

on déduit

$$\frac{d}{dx}e^{v(x)} = e^{v(x)} \cdot v'(x)$$

Exemple 22 Déterminer la dérivée de $f(x) = e^{2x}$.

Solution : cette fonction est de la forme $f(x) = e^{v(x)}$. D'où sa dérivée est :

$$\frac{d}{dx}(e^{2x}) = e^{2x}\frac{d}{dx}(2x) = 2e^{2x}$$

Exemple 23 Soient k et C deux nombres réels fixes et t une variable. Vérifier que la fonction $f(x) = Ce^{kt}$ est solution de l'équation différentielles : ky - y' = 0.

Solution : Si $f(x) = Ce^{kt}$, alors sa dérivée est $f' = Cke^{kt}$ et $ky = kCe^{kt}$. Ainsi,

$$kf' - f' = Cke^{kt} - kCe^{kt} = 0$$

11.5 Fonctions hyperboliques

11.5.1 Fonctions hyperboliques – Définitions

Définition 4 La fonction cosinus hyperbolique (cosh) est la fonction définie par :

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Définition 5 La fonction sinus hyperbolique (sinh) est la fonction définie par :

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Définition 6 La fonction tangente hyperbolique (tanh) est la fonction définie par :

$$\tanh(x) = \frac{\sinh x}{\cosh x}$$

11.5.2 Fonctions hyperboliques – Fonction cosh

- **Parité** : La fonction cosh est paire car :

$$\cosh(-x) = \frac{e^{-x} + e^x}{2} = \frac{e^x + e^{-x}}{2} = \cosh(x)$$

Dérivée :

$$\cosh'(x) = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{1}{2}((e^x)' + (e^{-x})') = \frac{1}{2}(e^x - e^{-x}) = \frac{e^x - e^{-x}}{2}$$

et donc

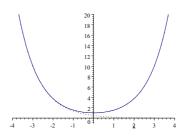
$$\cosh'(x) = \sinh(x)$$

Ainsi cosh est croissante sur $[0, +\infty[$ et décroissante sur $]-\infty, 0]$.

- Graphe: On peut décomposer la fonction cosh comme suit

$$\cosh(x) = \frac{e^x}{2} + \varphi(x) \quad avec \quad \varphi(x) = \frac{e^{-x}}{2}$$

Notons que $\lim_{x\to +\infty} \varphi(x) = \lim_{x\to +\infty} \frac{1}{2}e^{-x} = 0$, donc la courbe d'équation $y=\frac{e^{-x}}{2}$ est asymptote à la courbe de $\cosh x$. D'où on déduit le graphe de $\cosh x$



Graphe de $\cosh x$ et $\frac{e^{-x}}{2}$

11.5.3 Fonctions hyperboliques – Fonction sinh

- Parité: La fonction sinh est impaire car:

$$\sinh(-x) = \frac{e^{-x} - e^x}{2} = -\frac{e^x - e^{-x}}{2} = -\sinh(x)$$

Dérivée :

$$\sinh'(x) = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{1}{2}((e^x)' - (e^{-x})') = \frac{1}{2}(e^x + e^{-x}) = \frac{e^x + e^{-x}}{2}$$

et donc

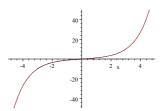
$$\sinh'(x) = \cosh(x)$$

Ainsi sinh est strictement croissante sur \mathbb{R} , car $\cosh x$ est toujours positive.

- Graphe: On peut décomposer la fonction sinh comme suit

$$\sinh(x) = \frac{e^x}{2} + \varphi(x)$$
 $avec$ $\varphi(x) = -\frac{e^{-x}}{2}$

 $\lim_{x \to +\infty} \varphi(x) = 0 \text{ donc la courbe d'équation } y = \frac{e^{-x}}{2} \text{ est asymptote à la courbe de sinh } x.$



Graphe de $\sinh x$ et $-\frac{e^{-x}}{2}$

11.5.4 Fonctions hyperboliques – Relation fondamentale

Il est facile d'établir la relation fondamentale suivante :

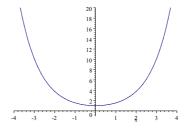
$$\cosh^2 x - \sinh^2 x = 1$$

A faire en exercice.

11.6 Fonctions hyperboliques réciproques

11.6.1 Fonction réciproque de cosh – Définition

Rappelons le graphe de $\cosh x$.



Graphe de $\cosh x$

On peut facilement constater que l'ensemble image de cosh est $[1, +\infty[$ et que cette fonction n'est pas bijective. Par contre sa restriction sur l'intervalle $[0, +\infty[$ est bijective (car continue et croissante). Sur cette intervalle, cosh admet une fonction réciproque qu'on appelle **argument cosinus hyperbolique** et qu'on note arg cosh, ainsi :

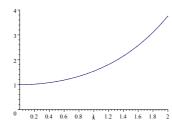
$$\begin{array}{ll} y = \arg\cosh x \\ x \in [1, +\infty[\end{array} \quad \Longleftrightarrow \quad \begin{array}{ll} x = \cosh y \\ y \in [0, +\infty[\end{array}$$

11.6.2 Fonction réciproque de cosh – Propriétés

- 1. Le domaine de définition de arg cosh est $[1, +\infty[$;
- 2. Le domaine image de arg cosh est $[0, +\infty[$;
- 3. $\cosh(\arg\cosh x) = x$ pour tout $x \in [1, +\infty[$;
- 4. $\operatorname{arg} \cosh(\cosh x) = x$ pour tout $x \in [0, +\infty[$.

11.6.3 Fonction réciproque de cosh - Graphe

La courbe de arg cosh s'obtient par symétrie par rapport à la première bissectrice de celle de la restriction de $\cosh x$ à $[0, +\infty[$.



1.8 1.6 1.4 1.2 1 0.8 0.6 0.6 0.4 0.2 0

Restriction de $\cosh x$ $[0, +\infty[$.

Fonction $y = \arg \cosh x$

Exemple 24 Calculer arg cosh (cos (-1)).

Solution: arg cosh (cos (-1)) n'est pas égale à -1, $car -1 \notin [0, +\infty[$, on doit trouver un réel a dans l'ensemble image de arg cosh tel que cosh a = cot(-1). Comme cosh x est paire, on a cosh(-1) = cosh(1), on a

$$\operatorname{arg} \cosh (\cos (-1)) = \operatorname{arg} \cosh (\cos (1)) = 1$$

11.6.4 Fonction réciproque de cosh – Dérivée

La dérivée de la fonction $\arg\cosh x$ s'obtient par application de la formule de la dérivée de la fonction réciproque :

$$\operatorname{arg} \cosh'(x) = \frac{1}{\cosh'(\operatorname{arg} \cosh x)} = \frac{1}{\sinh(\operatorname{arg} \cosh x)}$$

or d'après la relation fondamentale on a : $\sinh^2 y = \cosh^2 y - 1$ donc $\sinh^2(\arg\cosh x) = \cosh^2(\arg\cosh x) - 1 = x^2 - 1$ et donc $\sinh(\arg\cosh x) = \sqrt{x^2 - 1}$. D'où

$$\arg\cosh' x = \frac{1}{\sqrt{x^2 - 1}}$$

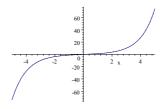
Exemple 25 Calculer la dérivée de $f(x) = \operatorname{arg cosh}(x^2 + 1)$.

Solution : f est la composée de arg cosh() et $x^2 + 1$, par application de la dérivation de la composée on a

$$\frac{d}{dx}\left(\arg\cosh\left(x^2+1\right)\right) = \frac{1}{\sqrt{(x^2+1)^2-1}}\frac{d}{dx}(x^2+1) = \frac{2x}{\sqrt{(x^2+1)^2-1}}$$

11.6.5 Fonction réciproque de sinh – Définition

Rappelons le graphe de $\sinh x$.



$$y = \sinh x$$

On remarque que l'ensemble image de sinh est $]-\infty,+\infty[$ et que cette fonction est bijective (car continue et croissante). La fonction sinh admet une fonction réciproque qu'on appelle **argument sinus hyperbolique** et qu'on note arg sin, ainsi :

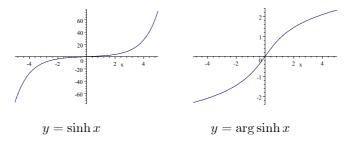
$$\begin{array}{ll} y = \arg \sinh x & x = \sinh y \\ x \in]-\infty, +\infty[& \longleftrightarrow & y \in]-\infty, +\infty[\end{array}$$

11.6.6 Fonction réciproque de sinh - Propriétés

- 1. Le domaine de définition de arg sinh est] $-\infty, +\infty$ [;
- 2. Le domaine image de arg sinh est $]-\infty,+\infty[$;
- 3. $\sinh(\arg \sinh x) = x \text{ pour tout } x \in]-\infty, +\infty[;$
- 4. $\arcsin(\sinh x) = x$ pour tout $x \in]-\infty, +\infty[$.

11.6.7 Fonction réciproque de sinh - Graphe

La courbe de arg sinh s'obtient par symétrie par rapport à la première bissectrice de celle $\sinh x$.



Exemple 26 Calculer $\arcsin (\sinh (-1))$.

Solution: $\arcsin(\sinh(-1)) = -1$ car $\arcsin(\sinh x) = x$ pour tout $x \in]-\infty, +\infty[$.

11.6.8 Fonction réciproque de sinh – Dérivée

Par application de la formule de la dérivée de la fonction réciproque :

$$\arcsin'(x) = \frac{1}{\sinh'(\arg\sinh x)} = \frac{1}{\cosh(\arg\sinh x)}$$

or d'après la relation fondamentale on a : $\cosh^2 y = \sinh^2 y + 1$ donc $\cosh^2(\arg\sinh x) = \sinh^2(\arg\sinh x) + 1 = x^2 + 1$ et donc $\cosh(\arg\sinh x) = \sqrt{x^2 + 1}$. D'où

$$\operatorname{arg\,sinh}' x = \frac{1}{\sqrt{x^2 + 1}}$$

Exemple 27 Calculer la dérivée de $f(x) = \arg \sinh (x^2 - 1)$.

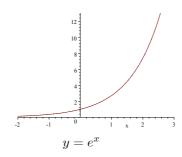
Solution : f est la composée de arg sin() et $x^2 - 1$, par application de la dérivation de la composée on a

$$\frac{d}{dx}\left(\arg\sinh\left(x^2 - 1\right)\right) = \frac{1}{\sqrt{(x^2 - 1)^2 + 1}}\frac{d}{dx}(x^2 - 1) = \frac{2x}{\sqrt{(x^2 - 1)^2 + 1}}$$

11.7 Fonction logarithme

11.7.1 Fonction logarithme – Définition

Considérons le graphe de la fonction exponentielle.



Cette fonction est continue et strictement croissante, elle admet donc une fonction réciproque : c'est la fonction logarithme et qu'on note

$$y = \ln x$$

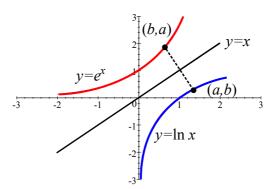
Définition 7 La fonction $y = \ln x$ est la réciproque de la fonction exponentielle.

Rappelons que le domaine de la fonction ln est le domaine image de exp. Ainsi

Domaine de ln est
$$]0, +\infty[$$

11.7.2 Fonction logarithme – Graphe

Comme la fonction ln est la réciproque de la fonction exp. Leurs graphes sont symétrique par rapport à y = x.



11.7.3 Fonction logarithme – Propriétés

Si (a,b) est un point du graphe de $y=e^x$, alors le point (b,a) est un point de la courbe de $y=\ln x$. On a donc

$$b = e^a$$
 et $a = \ln b$

d'où on déduit que

 $b = e^{\ln b}$ pour tout b > 0 (on remplace a par $\ln b$)

et

 $a = \ln e^a$ pour tout a (on remplace b par e^a)

En terme de x, on a

$$e^{\ln x} = x$$
 pour tout $x > 0$;
 $\ln e^x = x$ pour tout x .

Remarque 8 Notons qu'avec ces deux propriétés, il est possible de résoudre beaucoup d'équations en logarithme et exponentiel.

D'après la deuxième propriété, on

$$\ln e^0 = 0 \quad \text{soit} \quad \ln 1 = 0$$

et

$$\ln e^1 = 1$$
 soit $\ln e = 1$

d'où

$$ln 1 = 0;$$
 $ln e = 1.$

Exemple 28 Résoudre l'équation $e^{2x+3} = 4$.

Solution: Par application de la fonction ln des deux côtés on obtient

$$\ln e^{2x+3} = \ln 4$$

Et en tenant compte du faite que $\ln e^y = y$, on a

$$2x + 3 = \ln 4$$

d'où

$$x = \frac{1}{2}(\ln 4 - 3)$$

Exemple 29 Résoudre l'équation $\ln (4x - 1) = 9$.

Solution: Par application de la fonction exp des deux côtés on obtient

$$e^{\ln(4x-1)} = e^9$$

Et en tenant compte du faite que $e^{\ln y} = y$, on a

$$4x - 1 = e^9$$

soit

$$x = \frac{1}{4}(e^9 + 1)$$

A partir des propriétés de la fonction exponentielle, on déduit les propriétés de la fonction ln suivantes :

$$\ln xz = \ln x + \ln z, \quad \text{si } x > 0 \text{ et } z > 0$$

$$\ln \frac{x}{z} = \ln x - \ln z, \quad \text{si } x > 0 \text{ et } z > 0$$

$$\ln \frac{1}{z} = -\ln z, \quad \text{si } z > 0$$

$$\ln x^z = z \ln x, \quad \text{si } x > 0 \text{ et } z \text{ réel quelconque.}$$

On peut facilement montrer ces relations. Voici la preuve :

- Preuve de $\ln xz = \ln x + \ln z$, si x > 0 et z > 0.

En posant $x = e^s$ et $z = e^t$, on a

$$\ln(xz) = \ln(e^s e^t) = \ln e^{s+t} = s+t$$

et comme $\ln x = \ln e^s = s$ et $\ln z = \ln e^t = t$, on a

$$\ln xz = \ln x + \ln z$$

– Preuve de $\ln \frac{x}{z} = \ln x - \ln z$, si x > 0 et z > 0. En posant $x = e^s$ et $z = e^t$ comme ci-dessus. On a

$$\ln \frac{x}{z} = \ln \frac{e^s}{e^t} = \ln e^{s-t} = s - t$$

comme $\ln x = s \operatorname{etln} z = t$, on obtient

$$\ln\frac{x}{z} = \ln x - \ln z$$

- Preuve de $\ln \frac{1}{z} = -\ln z$, si z > 0.

En prenant x = 1 dans la relation précédente, on a $\ln(1/z) = \ln 1 - \ln z = -\ln z$.

- Preuve de $\ln x^z = z \ln x$ si x > 0 et z réel quelconque.

Posons $x = e^s$. Alors

$$\ln x^z = \ln(e^s)^z = \ln e^{zs} = zs$$

En tenant compte du fait que $\ln x = s$, on a

$$\ln x^z = z \ln x$$

Exemple 30 Simplifier les expressions suivantes : a. $\ln 2^3$, b. $\ln \frac{4}{3}$, c. $\ln 8 - \ln 2$, d. $\ln 6 + \ln \frac{1}{6}$.

a. $\ln 2^3 = 3 \ln 2$. $(car \ln x^z = z \ln x)$

b. $\ln \frac{4}{3} = \ln 4 - \ln 3$. $(\ln \frac{x}{z} = \ln x - \ln z)$. Comme $4 = 2^2$, alors $\ln 4 = 2 \ln 2$. d'où, $\ln \frac{4}{3} = 2 \ln 2 - \ln 3$. c. $\ln 8 - \ln 2 = \ln \frac{8}{2} = \ln 4$. (car $\ln x - \ln z = \ln \frac{x}{z}$) et comme $\ln 4 = 2 \ln 2$, alors $\ln 8 - \ln 2 = 2 \ln 2$.

d.
$$\ln 6 + \ln \frac{1}{6} = \ln 6 \frac{1}{6} = \ln 1 = 0$$
. $(car \ln x + \ln z = \ln(xz))$

Fonction logarithme – Dérivée 11.7.4

D'après la première propriété ci-dessus, on a

$$e^{\ln x} = x$$

en dérivant des deux côtés et tenant compte du fait que $(e^x)' = e^x$, on obtient (dérivée de la composée)

$$\frac{d}{dx}(e^{\ln x}) = e^{\ln x} \cdot \frac{d}{dx}(\ln x) = 1$$

d'où la dérivée de $\ln x$ est donnée par

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \qquad x > 0$$

Exemple 31 Soit $y = \ln x^2$, déterminer y'.

Solution: Notons que $y = \ln x^2 = 2 \ln x$, ainsi,

$$y' = (2 \ln x)' = 2 \left(\frac{1}{x}\right) = \frac{2}{x}$$

Fonction logarithme – Dérivée $\ln(v(x))$ 11.7.5

La fonction $y = \ln(v(x))$ est la composée de la fonction $\ln(x)$ et de la fonction $\nu(x)$. Par application de la règle de dérivation de la fonction composée

$$u(v(x)) = u'(v(x)).v'(x)$$

on obtient

$$\frac{d}{dx}[\ln(v(x))] = \ln'(v(x)).v'(x)$$

Soit

$$\frac{d}{dx}[\ln(v(x))] = \frac{v'(x)}{v(x)} \quad \text{si } v(x) > 0 \text{ et dérivable}$$

En utilisant cette règle on obtient la formule générale importante :

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x} \quad \text{si } x \neq 0$$

Notons que $|x| = (x^2)^{1/2}$, et donc

$$\frac{d}{dx} [\ln |x|] = \frac{d}{dx} [\ln(x^2)^{1/2}] \qquad \text{car } |x| = (x^2)^{1/2}$$

$$= \frac{d}{dx} \left(\frac{1}{2} \ln x^2\right) \qquad \text{car } \ln x^z = z \ln x$$

$$= \frac{1}{2} \cdot \frac{d}{dx} (\ln x^2) \qquad \text{car } \frac{d}{dx} (a.u(x)) = a.\frac{d}{dx} (u(x))$$

$$= \frac{1}{2} \cdot \frac{1}{x^2} \cdot \frac{d}{dx} (x^2) \qquad \text{car } \frac{d}{dx} [\ln(v(x))] = \frac{1}{v(x)} \cdot v'(x)$$

$$= \frac{1}{2} \cdot \frac{1}{x^2} \cdot 2x = \frac{1}{x}$$

D'où la preuve de la formule.

Exemple 32 Calculer $\frac{d}{dx} \ln |2x|$.

Solution : En utilisant la règle de dérivation ci-dessus, et en tenant compte de $\frac{d}{dx}2x=2$ il est facile de trouver que

$$\frac{d}{dx}\ln|2x| = \frac{1}{x}$$

Attention on a bien $\frac{d}{dx} \ln 2x = \frac{1}{x}$ (ce n'est pas une erreur).

Exemple 33 Déterminer $\frac{d}{dx} \left[\ln \left(x \sqrt{x+1} \right) \right]$. Solution: En prenant $u(x) = x \sqrt{x+1}$ et donc $u'(x) = \sqrt{x+1} + x/(2\sqrt{x+1})$, on a

$$\frac{d}{dx}[\ln(x\sqrt{x+1})] = \frac{1}{x\sqrt{x+1}} \cdot \frac{d}{dx}(x\sqrt{x+1})$$

$$= \frac{1}{x\sqrt{x+1}} \left(\sqrt{x+1} + \frac{x}{2\sqrt{x+1}}\right)$$

$$= \frac{1}{x} + \frac{1}{2(x+1)}$$

Autrement: En développant $\ln(x\sqrt{x+1})$, on obtient

$$\frac{d}{dx}[\ln(x\sqrt{x+1})] = \frac{d}{dx}[\ln x + \ln(x+1)^{1/2}]$$

$$= \frac{d}{dx}\left[\ln x + \frac{1}{2}\ln(x+1)\right]$$

$$= \frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x+1}$$

$$= \frac{1}{x} + \frac{1}{2(x+1)}$$

<u>NOTE</u>: Dans la majorité des problèmes il est préférable d'utiliser la deuxième méthode.

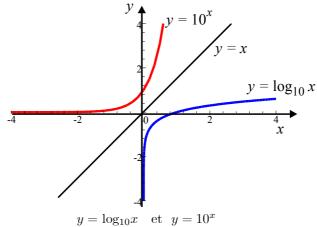
Fonctions logarithme de base a (a > 0) 11.8

11.8.1 Fonctions logarithme de base a – Définition

Ci-dessus on a défini la fonction $\ln x$ comme étant la réciproque de la fonction e^x . De la même manière on définit la fonction logarithme de base a (a > 0) comme étant la fonction réciproque de la fonction exponentielle a^x . On note

$$y = \log_a x$$

Par exemple, la réciproque de $y = 10^x$ est communément connue sous le nom de logarithme de base 10. Elle se note $\log_{10} x$.



Fonctions logarithme de base a – Propriétés 11.8.2

Les propriétés basiques de cette fonction sont identiques à celles de $\ln x$.

 $-a^{\log_a x} = x \quad \text{pour } x > 0;$

 $-\log_a(a^x) = x \quad \text{pour tout } x;$

 $-\log_a 1 = 0;$

 $-\log_a a = 1;$

 $\log_a x = 1;$ $-\log_a (xz) = \log_a x + \log_a z \qquad x > 0, z > 0;$ $-\log_a \frac{x}{z} = \log_a x - \log_a z \qquad x > 0, z > 0;$ $-\log_a \frac{z}{z} = -\log_a z \qquad z > 0;$

 $-\log_a(x^z) = z\log_a x$ x > 0, z réel quelconque.

Remarque 9 Si a=10, $\log_a x = \log_{10} x = \log x - c$ 'est la notation communément utilisée— et, si a=e, on a $\log_e x = \ln x$.

Fonctions logarithme de base a – Changement de base

Notons que l'écriture

$$\log_a x = s$$

signifie que

$$x = a^3$$

En appliquant la fonction ln des deux côtés, on obtient

$$\ln x = \ln a^s = s \ln a$$

Soit

$$s = (\ln x)/(\ln a)$$

D'où la nouvelle formulation de la fonction logarithme de base a

$$\log_a x = \frac{\ln x}{\ln a}$$

11.8.4 Fonctions logarithme de base a – Dérivation

Il est facile de déterminer la dérivée de $y = \log_a x$ en utilisant la relation

$$\log_a x = \frac{\ln x}{\ln a}$$

Ainsi

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx}\left(\frac{1}{\ln a}\ln x\right) = \frac{1}{\ln a} \cdot \frac{1}{x} = \frac{1}{x \cdot \ln a}$$

Et par conséquent, si u(x) > 0 et dérivable, on a

$$\frac{d}{dx}[\log_a u(x)] = \frac{u'(x)}{u(x).\ln a}$$

Exemple 34 Calculer $\frac{d}{dx} \left(\log_{10} x^2 \right)$.

Solution Par application de la formule de dérivation de la fonction composée, avec $u(x) = x^2$,

$$\frac{d}{dx}(\log_{10} x^2) = \frac{\frac{d}{dx}x^2}{x^2 \ln 10} = \frac{2x}{x^2 \ln 10} = \frac{2}{x \ln 10}$$

11.9 Fonctions exponentielles de base a

11.9.1 Fonctions exponentielles de base a – Nouvelle formulation

En tenant compte de ce qui précède, on a

$$a^x = (e^{\ln a})^x$$
 car $a = e^{\ln a}$

et comme

$$(e^{\ln a})^x = e^{x \ln a}$$

on obtient une nouvelle formulation de la fonction exponentielle de base a>0

$$y = a^x = e^{x \ln a}$$

Remarque 10 La fonction $x \longmapsto a^x$ est donc la composée des fonctions $x \longmapsto x. \ln a$ et $x \longmapsto e^x$

11.9.2 Fonctions exponentielles de base a – Dérivation

Sachant que $y = a^x = e^{x \ln a} = e^{u(x)}$, on a Thus,

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x\ln a}) = (\ln a)e^{x\ln a} = (\ln a)a^x$$

11.10 Fonctions puissances

11.10.1 Fonctions puissances – Définition

Dèfinition 8 Soit $\alpha \in \mathbb{R}$. La fonction puissance est la fonction définie par

$$x \longmapsto x^{\alpha} = e^{\alpha \ln x}$$

Son domaine de définition est donc le domaine de la fonction ln qui est $]0, +\infty[$.

Fonctions puissances – Dérivée 11.10.2

En tenant compte de la définition on obtient facilement la dérivée

$$f'(x) = \alpha x^{\alpha - 1} = \frac{\alpha}{x} e^{\alpha \ln x}$$

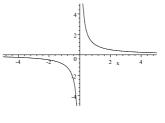
1. Si $\alpha > 0$ $\lim_{x \to +\infty} x^{\alpha} = +\infty$ et $\lim_{x \to 0} x^{\alpha} = 0$;

2. Si $\alpha < 0$ $\lim_{x \to +\infty} x^{\alpha} = 0$ et $\lim_{x \to 0} x^{\alpha} = +\infty$.

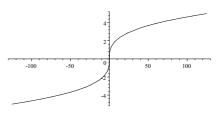
Remarque 11 Notons au passage que ∞^0 , 0^0 et 1^∞ sont des formes indéterminées.

Fonctions puissances – Graphes 11.10.3

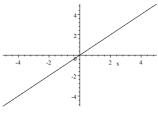
Distinguer les cas : $\alpha < 0, 0 < \alpha < 1, \alpha = 1, \alpha > 1$.

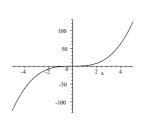


$$y = x^{-1}$$



$$y = x^{\frac{1}{3}}$$





$$y = x^3$$

Comparaison des croissances 11.11

Pour les fonctions ci-dessus, on a les propriétés suivantes :

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} \longrightarrow 0 \qquad (\alpha > 0)$$

$$\begin{array}{ll} \lim\limits_{x\to +\infty} \frac{\ln x}{x^{\alpha}} \longrightarrow 0 & (\alpha>0) & (\text{la puissance l'emporte sur le logarithme}) \\ \lim\limits_{x\to +\infty} \frac{a^x}{x^{\alpha}} \longrightarrow +\infty & (\alpha>0, a>1) & (\text{l'exponentiel l'emporte sur la puissance}) \\ \lim\limits_{x\to +\infty} \frac{a^x}{\ln x} \longrightarrow +\infty & (a>1) & (\text{l'exponentiel l'emporte sur le logarithme}) \end{array}$$

$$\lim_{x \to +\infty} \frac{a^x}{\ln x} \longrightarrow +\infty \quad (a > 1)$$